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Mixture models

Mixture models are used to model data coming

from unknown populations
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Conditional on the latent class X; € {1,...,K}:
Yi | X %

Widely used for model based clustering
[See Ibrahim Kaddouri's poster Tuesday night!]



Example: iid mixtures
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Example: iid mixtures

Model:
iid
X17...7XnN(7T1,~~~77TK)
Y‘X'f'sFX i=1,...,n

They are not nonparametrically identifiable.
eg. K =2, model parameters are then 0 = (7,1 — m, Fo, F1).
Law of (Y1,...,Y,) under @ = (1/4,3/4, Fo, F1)

n

n 1 3
Pé )(Al X oo X An) — H <4F0(A1)+ 4F1(AI)>

i=1

—H(l Fo(A +F1(A) +;F1(A,-)>

= PP(A X A, 0 = (1/2,1/2,

Fo—;F17F1>.



Another example:
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P(1/2,1/2,F0,F1) - P(1/2,1/2,F5,F{)



Example: Hidden Markov Models (HMM)

Model:

X1, X2, ... ~ Markov(Q, )
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They are nonparametrically identifiable!

eg. K =2, model parameters are 0 = (Q, 7, Fo, F1), and law of (Y1,..., Ys) is:
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Example: Hidden Markov Models (HMM)

Model:

X1, X2, ... ~ Markov(Q, )

ind

Y,"X,‘NF)(/. i:l,...7n

They are nonparametrically identifiable!

eg. K =2, model parameters are 0 = (Q, 7, Fo, F1), and law of (Y1,..., Ys) is:
n—1 n
P (A x A= 37 wGa) [ Qe xi) [T F(4)
x€{0,1}" i=1 i=1
Theorem 1 (Allman, Matias, and Rhodes 2009).

If n>3 and (Ya,..., Ys) are “truly dependent” then 0 is identifiable from

Pé") up to label switching [ie 6 — Pg") is invertible up to permutation of the
population labels].



Settings: two-state HMM

Binary latent variables X = (X1, Xa,...) € {0,1}",

X = (Xu)nen ~ Stat. Markov(Q), Q= 1-p p
g 1l—gq

Yo | Xn ~ Fx,

We denote 6 = (p, q, Fo, F1),

q P
=Py (X =0) = ——, mi=Py (X =1) = —/—.
70 9(1 ) p+q 1 9(1 ) p+gq



HMM: identifiability

From the identifiability Theorem, (Y4i,..., Y,) are independent iff one of the
three condition holds:

1. (Xi,...,X,) are independent <—= 1—p—q=0;

2. X1 =Xo =---= X, almost-surely <= p=0o0rqg=0;

3. Fo=Fi.
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Can we estimate 6 (modulo label-switching) from (Yi,..., Ys) ~ Pé") ?



HMM: identifiability

From the identifiability Theorem, (Y4i,..., Y,) are independent iff one of the
three condition holds:

1. (Xi,...,X,) are independent <—= 1—p—q=0;
2. Xy =Xo =--- = X, almost-surely <= p=0orq=0;
3. Fo=F.

If none of the above hold, then the model is identifiable.

BUT
Can we estimate 6 (modulo label-switching) from (Yi,..., Ys) ~ Pé") ?
We analyze the minimax risk over

9,6,

O3 ¢ (R) = {0 1p,g26, 1-—p—qlze [Ih—fille2C [fillgs < R}~



Rough statement of the results

[We ignore label-switching issues for simplification]

Estimation of Q

2
inf sup  Eo(|Q— Q%) = M%-
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[We ignore label-switching issues for simplification]
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Estimation of Fy and F; on [O ].]
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Rough statement of the results

[We ignore label-switching issues for simplification]

Estimation of Q

2
inf sup  Eo(|Q— Q%) = M%-

2.4/6
@ peo () o2t

Estimation of Fy and F; on [O ].]
The minimax rate for estimating the densities exhibit a transition:

o If sp =51 =s:

1 2s/(2s+1) 1
. 7 112 ~ _ o o4,
|%f sup  Eo(||fi — fill72) =< (5262<2n> 0 82€2¢4n
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o If sp > s1:

1 2s0/(2s0+1) 1
inf  sup  Eo(|lh—fhl2) = —=—r T s
3 beo? () (H HL) 52e2(2n 52€2¢4n

1 2s1/(2s1+1) 1

fi 5051
1 06@51F7C(R)



Some remarks:

1. Unexpected transition in the rates when sy # s;.

2. If the latent variables X = (X1, X2, ...) were known, then the minimax

1 2s/(2s5+1)
on

where dn corresponds to the worse average size of the smallest cluster.

rates would be in any cases:

— Effective sample size goes from én when X is known to §%€2¢?n when X
unknown (much harder!)



Estimation strategy (ie. proving the upper bounds) when s, = s;

We construct a wavelet estimator using the CDV" basis (Wi ).

For simplicity we identify in the next fy = (fo’* ).

!Cohen, Daubechies, and Vial 1993
2Reminiscent to the spectral method of Anandumar et al. 2014



Estimation strategy (ie. proving the upper bounds) when s, = s;

We construct a wavelet estimator using the CDV" basis (Wi ).

For simplicity we identify in the next fy = (fo’* ).

Inspired by the identifiability Theorem, for any h the map
Mo s (9, (67, (8%)) = (Bo(), Ba(h®), Ba(h® 19 h), Ba(h® he b))

can be inverted (modulo label-switching) provided (h, fo — fi) # 0°.

!Cohen, Daubechies, and Vial 1993
2Reminiscent to the spectral method of Anandumar et al. 2014



The estimation strategy then goes as follows:

1. Find a good h.

2. Using the method of moments, we obtain estimators of
(p7 q, (fowjk)7 (flek)) by |etting

n n—1

A oA 2V AV 11 1

(5,3, (™), (A k))—Mhl(n 2 0% = D h(Yvis,
(=il =il

n—2 n—2
1 1
73 S HAYia), =53 h(voh(v,-ﬂ)h(mz)).
3. Construct block-thresholded wavelet estimators f, and f. [not so easy! in
contrast with density estimation the optimal thresholds depend on the

parameters].
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The estimation strategy then goes as follows:

1. Find a good h.

2. Using the method of moments, we obtain estimators of
(p7 q, (fowjk)7 (flek)) by |etting

n n—1

A oA 2V AV 11 1

(5,3, (™), (A k))—Mhl(n 2 0% = D h(Yvis,
(=il =il

) Z MOYDA(Yi2), 5 S h(Yi)h(Y,-H)h(yl,H))

n—3+% -
i=1

3. Construct block-thresholded wavelet estimators f, and f. [not so easy! in
contrast with density estimation the optimal thresholds depend on the

parameters].
This will attain:

| 2s;/(2sj+1) 1
X A 2
inf sup  Eo(|lfi—fl2) S <(gz€zgz,,> t 2
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What does it mean to find a good h?

1. Find a good h.

The inverse map ./\/lh_1 is unstable for poor choice of h.

3 Anandumar et al. 2014; Moss and Rousseau 2022; Abraham, Castillo, and Gassiat 2021; Lehéricy
2018; etc.
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What does it mean to find a good h?

1. Find a good h.

The inverse map ./\/lh_1 is unstable for poor choice of h.
To avoid instabilities and achieve optimality we need ¢ > 1/2 such that

|[(fo — fi, hY| > cl||fo — ]| 2] ]| 2- (Separating Hyperplane Condition)

Previous works® on estimation in HMM faces similar issues and suggest to
choose h at random...

This will eventually work for fixed fy, fi but cannot be minimax optimal.

h must be estimated from the data!

3 Anandumar et al. 2014; Moss and Rousseau 2022; Abraham, Castillo, and Gassiat 2021; Lehéricy
2018; etc.
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Failure of the separating hyperplane condition

Suppose (&);>1 is an orthonormal basis for L2[0, 1] and choose

d
h:ZWkek Wk LEN(O, 1).
k=1
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Failure of the separating hyperplane condition

Suppose (&);>1 is an orthonormal basis for L2[0, 1] and choose

d
h:ZWkek Wk LEN(O, 1).
k=1
Then with My orthogonal projection onto span(e, ..., e4):
hll2  as
Ple vy (fh— fi, by ~ N0, IMa(fs — R)]2)
so
N(0,1
(6= o)~ SO (6 = ) o

Problem: having [|Mg(fo — )|

2~ f—f

(2 can require d large.
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Key ideas to compute M, *

2. Method of moments, invert My
(Invertible) Reparameterization: 8 — (¢1, ¢2, ¢3, 91, 12) such that

e sparsity <= |¢1] near 1,

e near independence of X <= |¢>| near 0,

e populations not well separated <= |¢3]| near 0,
e 1) is the invariant distribution of the Xj's,

e 1 is a direction.
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2. Method of moments, invert My
(Invertible) Reparameterization: 8 — (¢1, ¢2, ¢3, 91, 12) such that

sparsity <= |¢1| near 1,

near independence of X <= |¢>| near 0,
populations not well separated <= |¢3| near 0,
e 1) is the invariant distribution of the Xj's,

e 1 is a direction.

The magic formula:

=1 @1 @1 + (1*¢1)¢2¢3(¢2®¢2®¢1+?/11®¢’2®1/12)
Z( — $2) 305 - 2 @ Y1 @ Y2
%(1 - ¢’1)¢’1¢52¢3 Y2 @ Y2 @ Po.

From here we can easily extract (1 — ¢3)¢2¢3, (1 — $3)p303, (1 — ¢3)P1d3¢3 as
well as the wavelets coefficients of 11 and ,.
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Key ideas to compute M, *

2. Method of moments, invert My
(Invertible) Reparameterization: 8 — (¢1, ¢2, ¢3, 91, 12) such that

sparsity <= |¢1| near 1,
near independence of X <= |¢»| near 0,

populations not well separated <= |¢3| near 0,
e 1) is the invariant distribution of the Xj's,
e 1 is a direction.

The magic formula:

=1 @Y1 @Y1+ (1*¢1)¢2¢3(¢2®¢2®¢1+Z/11®¢2®1/12)

Z( — $2) 305 - 2 @ Y1 @ Y2

1

— (1= $7)p10303 - 12 @ Y2 ® V2.
From here we can easily extract (1 — ¢7)¢263, (1 — ¢7)d5¢3, (1 — ¢7)p1d5¢3 as
well as the wavelets coefficients of 11 and ,.

Exponential deviations for moments: Paulin 2015.
13



Estimation strategy when sp > s; (rough)

Previous estimators not always optimal!

Stationnary distribution of (Y1, Y2,...):
1 = mofo + (1 — mo) A

so
h= ! (1111—7Tofo)

1—mo
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When sp > s1:

e 11 has (morally) smoothness s; and can be easily estimated using your
favorite density estimator;

e fy can be estimated at a much faster rate than 11 since it is smoother;
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Estimation strategy when sp > s; (rough)

Previous estimators not always optimal!

Stationnary distribution of (Y1, Y2,...):
1 = mofo + (1 — mo) A

so
h= ! (1111—7Tofo)

1—mo

When sp > s1:

e 11 has (morally) smoothness s; and can be easily estimated using your
favorite density estimator;

e fy can be estimated at a much faster rate than 11 since it is smoother;

So when sy > s; we introduce the rough estimator based on the above heuristic:
7R

14



Proofs of the lower bounds

We use the “traditional” Fano-Birgé device.

Main challenge is computing KL(PY"; P’(,”)); 0=(p,q,f,f), 0= (pd,h,h)
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Proofs of the lower bounds

We use the “traditional” Fano-Birgé device.

Main challenge is computing KL(P!"; P((,”)); 0=(p,q,f,f), 0= (pd,h,h)

We use one of our earlier result that if min(fo, f1, 1%, 1?1) > ¢, then

KL(PS"s P") = nllpg” — pg I

and then we use the magic formula to control

1pSY = Pl = 1(1 = 61)263 — (1 — BR) 2653
+1(1 - ¢1)d33 — (1 — $1)d243]
+1(1 = ¢1)916503 — sen((v2, 92))(1 — 61)616363]
+ [lthr — a2

+max (|(1 = 6)6263), (1 — B33 ) 162 — sen((a, §2))all

15



Conclusion, perspectives

Take home message

e HMMs are mixture models with Markov regime that can be identified
without any assumption on the population distributions as soon as they
are distinct and the Markov has invertible transition thus not i.i.d.

e For 2 states HMMs, we identify how the minimax rates depend on n and
being far from the non-identifying region with parameters describing the
“distance” to independence.
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Conclusion, perspectives

Take home message

e HMMs are mixture models with Markov regime that can be identified
without any assumption on the population distributions as soon as they
are distinct and the Markov has invertible transition thus not i.i.d.

e For 2 states HMMs, we identify how the minimax rates depend on n and
being far from the non-identifying region with parameters describing the
“distance” to independence.

Further questions

e Extension to more than two latent states?

e Algorithms: robustness; detection of problematic regions?

e Non parametric clustering for HMMs? (See Ibrahim’s poster!)

e Model selection: can we choose between (%, #), (f, £7), (£, ), and
(R, /) 7

e Secondary adaptation questions...

16



Thank you!
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